
Corpus Oudnederlands application manual

Table of contents

Introduction 4

Information about the corpus 4

Lemmatization 4

Part of speech tagging 4

Metadata 5

Date 5

Witness Year 5

Permissive / Strict 5

Localization 5

Country 5

Area 5

Place 6

Kloeke location code 6

Text type 6

Fictionality 6

Genre 6

Subgenre 6

Title and author 6

Title 6

Author 7

Application user manual 8

Getting started 8

Searching the corpus 9

Simple search 9

Search 9

Wildcards 9

Reset 10

History 10

Global settings 10

1

Extended search 11

Wildcards 13

Upload a list of values 13

Part of speech dialog box 14

Cliticity 14

Complete word or word part 14

Starting a new search 15

Filter search by 15

Advanced search 16

The query builder 16

The tab search 16

Token attributes 17

Adding attributes to a token box 17

Function of the two +-buttons in a token box 18

The tab options 19

Managing sequences of token boxes 19

Uploading value lists in the query builder 20

Copy to CQL editor 20

Expert search 20

Copy to query builder 21

Import query 21

Gap filling 21

Viewing results 23

Per Hit view 23

Sorting results 23

Grouping results 24

Per Document view 26

Sorting results 26

Grouping results 27

Exporting results 27

Information about a document 27

Content 27

Metadata of a document 28

Statistics 28

2

Exploring the corpus 28

Documents 28

N-grams 29

Options 29

Example 29

Statistics (frequency lists) 30

Options 30

Example 30

Appendix: Corpus Query Language 32

CQL support 32

Supported features 32

Differences from CWB 33

(Currently) unsupported features 34

Using Corpus Query Language 34

Matching tokens 34

Sequences 35

Regular expression operators on tokens 35

Case- and diacritics-sensitivity 36

Matching XML elements 36

Labeling tokens, capturing groups 37

Global constraints 37

3

Introduction
This manual describes the corpus exploitation environment for the Corpus Oudnederlands. The
corpus application is developed by the INT. The backend of the application is the BlackLab Lucene
based search engine developed for corpora with token-based annotation
(http://inl.github.io/BlackLab/). The web-based frontend is a further development of the
corpus-frontend application developed by INT (https://github.com/INL/corpus-frontend) in CLARIN
and CLARIAH projects. Its design is inspired by the first version of the OpenSoNaR user interface by
Tilburg and Radboud University (https://github.com/Taalmonsters/WhiteLab2.0).

Information about the corpus
The Corpus Oudnederlands in the current release is a collection of all remaining Dutch word material
from the period 475-1200 that served as source material for the Oudnederlands Woordenboek (ONW;
Dictionary of Old Dutch). This collection of material consists of various components: three large texts
(Wachtendonkse Psalmen, Leidse Willeram, Mittelfränkische Reimbibel) and numerous smaller Old
Dutch texts and text fragments (including rune inscriptions), glosses and single words, Frankish
material and toponymic material. More detailed information on how the corpus was compiled can be
found here.

A first online accessible version of the corpus was launched on 29 February 2012, in the form of a
quotation database, in which it was not possible to search for consecutive words. The reason was that
each word in a quotation had a record in the database, with linguistic annotation (part of speech and
lemma), the full quotation and the metadata of the quotation. This version is no longer available.

In 2018, for the Nederlab project, the data from the relational database were converted into token by
token linguistically annotated text, including corrections of the linguistic annotation and additional
text metadata.

In this new version, several corrections have been made to the added metadata in the corpus and the
linguistic annotation has been mapped to the TDN-tagset (see below).

Lemmatization
The Old Dutch word forms all have a modern Dutch lemma. For words no longer used in modern
Dutch, a modern lemma has been constructed using the same linguistic principles applicable to still
existing words.

More information about the used lemmatization principles can be found in Marijke Mooijaart, Het
lemma in het GiGaNT-lexicon.

Part of speech tagging

The original part of speech tagging of the Corpus Oudnederlands was done according to the
guidelines developed for the Dictionary of Old Dutch (ONW). The Corpus was tagged manually by
the editors of the ONW.

4

http://inl.github.io/BlackLab/
https://github.com/INL/corpus-frontend
https://github.com/Taalmonsters/WhiteLab2.0
http://gtb.ivdnt.org/search/?owner=onw
https://ivdnt.org/images/stories/onderzoek_en_onderwijs/lexicologie_en_lexicografie/onw_inleiding.pdf
https://ivdnt.org/images/stories/onderzoek_en_onderwijs/publicaties/TaalbankWorkingpaper4.pdf
https://ivdnt.org/images/stories/onderzoek_en_onderwijs/publicaties/TaalbankWorkingpaper4.pdf

In the context of the CLARIAH+ project, a tagset and tagging principles for the annotation of
diachronic corpora of historical Dutch have been developed: Tagset voor Diachroon corpusmateriaal
van het Nederlands (TDN). A detailed description can be found here. The original part of speech
tagging has been converted into the TDN, and is used in the current application.

Metadata

The Corpus Oudnederlands has also been enriched with an elaborate set of metadata categories.
These metadata will all be described below. In the corpus application it is possible to limit a search by
filtering on metadata categories.

Date

Witness Year

For each document in this corpus, we indicate the period in which the manuscript, providing us the
text, was written. Witness Year does not necessarily refer to the period in which the text itself was
written. It only concerns the carrier of the text.

Witness Year cannot be stated with the same accuracy for every document. For example, Le Compte
Général de 1187, connu sous le nom de “Gros Brief” can be dated exactly to 1187, while the Liber
Traditionum Sancti Petri Blandiniensis originated between 639-1200.

Permissive / Strict

It is possible to do a permissive and strict search for Witness Year. What exactly is the difference
between the two options? An example can clarify this. Suppose you want to investigate sources that
came into being between 800 and 825.

If you choose to do a Strict search by Witness Year, the search query will only result in manuscripts
that were produced later than 800 but before 825. The Corpus Oudnederlands has two such
documents: Nederbergse doopbelofte , which was handed down in a manuscript dating from the period
811-812 and Runeninscriptie Bernsterburen, dating from 800.

If, on the other hand, you choose the option Permissive in Witness Year, more documents are found,
one of which is Traditiones et antiquitates Fuldenses, which was handed down in a manuscript dating
from the period 822-845. This dating does indeed partly fall within the indicated period 800-825.

Localization

Country

In this corpus, three countries are distinguished: België, Duitsland and Nederland.

Area

Within the above mentioned countries, the following areas are distinguished: Friesland, Groningen,
Limburg, Nederberg, Noord-Holland, Noord-Nederrijn, Oostnederrijn-Westfalen, Utrecht, and
Zuid-Nederrijn.

5

https://ivdnt.org/wp-content/uploads/2021/05/TDN_INT_WP_1.pdf

Place

If it was possible to determine exactly where a particular text originated or was found, this Place (in
modern spelling) will be mentioned: Arum, Britsum, Egmond, Essen, Garnwerd, Loppersum,
Munsterbilzen, Nederberg, Oostum, Raskwerd, Toornwerd, Werden and Westeremden.

Kloeke location code

In the 1920s, the Dutch dialectologist G.G. Kloeke designed a system with unique designations for
thousands of places and hamlets in the Netherlands, Flanders, French Flanders and north-western
Germany. It is possible to filter documents based on this so-called Kloekecode. More information
about (searching with) the Kloekecode can be found here.

Text type
All texts in this corpus are provided with metadata to help determine fictionality and genre of the text.
These metadata can be filtered during the search.

Fictionality
All the documents in the Corpus Oudnederlands are considered to be non-fictional texts (non-fiction).

Genre
The texts are divided into two main genres: prose and verse.

Subgenre

The texts can be sorted out using one or more of the different subgenre labels (see the paragraph Filter
search by). These labels may indicate a general text category as well as a more specific one; they may
touch either the content of a text or its form.

● Biblical text: Bible, lectionaria, diatessara, bible books (Psalm, Song of Songs)
● Glossary: collection of glosses
● History: text with historical information
● History, theology: text with both historical and theological information
● Legislative/administrative document: official records, charters
● Legendary biography: description of the life of worldly leaders
● Legendary hagiography: description of the life of saints
● Miscellaneous
● Probatio pennae
● Religious: texts dealing with religion or religious matters
● Religious, secular: texts dealing with both religious and non-religious matters
● Runic Inscription: inscription, dedication

Title and author

Title

This search field is provided with a list, which contains suggestions for search terms in alphabetical
order, based on the characters typed in.

All 90 documents of this corpus come from different sources (see also the About).

6

http://www.meertens.knaw.nl/kloeke/

Author

It is possible to search by author name. However, for almost all documents in this corpus the author is
unknown or uncertain. Only seven names of authors of Old Dutch texts in this corpus have been
handed down: Altfrid, Einhard, Galbert de Bruges, Hariulf, Jean de Klerk, Rudolfus Trudonensis and
Willeram van Ebersberg.

7

Application user manual

Getting started
Here are a few examples of what you can do with the corpus application (the links will take you to the
application):

● To search for a word literally in the form you specify, use Simple Search or the attribute Word
in Extended search.

○ Simple Search for gisund
○ Extended Search for Word gisund

● To search by lemma form (i.e. the canonical form or citation form of a set of forms
(headform)), you can use Simple Search or else the attribute Lemma in Extended Search.

○ Simple Search for onrecht
○ Extended Search for Lemma onrecht

● To search for words satisfying a certain pattern, use wildcards in Simple Search or Extended
search, or regular expressions in Advanced Search or Expert Search.

○ words ánd lemmata starting with ver and ending with an in Simple Search
○ only words starting with ver and ending with an in Extended Search
○ only lemmata starting with ver and ending with en in Extended Search
○ lemmata starting with be, ending in en with one syllable in between in Expert Search

● To search for a multi-word pattern, e.g. all determiners appearing before a given lemma as a
noun, use the query builder in Advanced Search or use Expert Search:

○ adpositions before the lemma huis in query builder in Advanced Search
○ adposition before the lemma huis in Expert Search

● To see which unique forms occur as a result of your search, use the Group hits by feature.
○ example Group by Word: different adjectives before the word man
○ example Group by Lemma before: words preceding the lemma god

● To explore the distribution of document properties in the corpus, use the Explore feature
○ example: characteristics about subgenres
○ example: localization

8

http://corpusoudnederlands.ivdnt.org/corpus-frontend/ONL/search/hits?first=0&number=20&patt=%5Bword_or_lemma%3D%22gisund%22%5D&interface=%7B%22form%22%3A%22search%22%2C%22patternMode%22%3A%22simple%22%7D
http://corpusoudnederlands.ivdnt.org/corpus-frontend/ONL/search/hits?first=0&number=20&patt=%5Bword%3D%22gisund%22%5D&interface=%7B%22form%22%3A%22search%22%2C%22patternMode%22%3A%22extended%22%7D
http://corpusoudnederlands.ivdnt.org/corpus-frontend/ONL/search/hits?first=0&number=20&patt=%5Bword_or_lemma%3D%22onrecht%22%5D&interface=%7B%22form%22%3A%22search%22%2C%22patternMode%22%3A%22simple%22%7D
http://corpusoudnederlands.ivdnt.org/corpus-frontend/ONL/search/hits?first=0&number=20&patt=%5Blemma%3D%22onrecht%22%5D&interface=%7B%22form%22%3A%22search%22%2C%22patternMode%22%3A%22extended%22%7D
http://corpusoudnederlands.ivdnt.org/corpus-frontend/ONL/search/hits?first=0&number=20&patt=%5Bword_or_lemma%3D%22ver.%2Aan%22%5D&interface=%7B%22form%22%3A%22search%22%2C%22patternMode%22%3A%22simple%22%7D
http://corpusoudnederlands.ivdnt.org/corpus-frontend/ONL/search/hits?first=0&number=20&patt=%5Bword%3D%22ver.%2Aan%22%5D&interface=%7B%22form%22%3A%22search%22%2C%22patternMode%22%3A%22extended%22%7D
http://corpusoudnederlands.ivdnt.org/corpus-frontend/ONL/search/hits?first=0&number=20&patt=%5Blemma%3D%22ver.%2Aan%22%5D&interface=%7B%22form%22%3A%22search%22%2C%22patternMode%22%3A%22extended%22%7D
http://corpusoudnederlands.ivdnt.org/corpus-frontend/ONL/search/hits?first=0&number=20&patt=%5Blemma%3D%22be%5B%5Eaeiou%5D%2A%5Baeiou%5D%2B%5B%5Eaeiou%5D%7B1%2C%7Den%22%5D&interface=%7B%22form%22%3A%22search%22%2C%22patternMode%22%3A%22expert%22%7D
http://corpusoudnederlands.ivdnt.org/corpus-frontend/ONL/search/hits?first=0&number=20&patt=%5B+pos+%3D+%22adp%22+%5D+%5B+lemma+%3D+%22huis%22+%5D&interface=%7B%22form%22%3A%22search%22%2C%22patternMode%22%3A%22advanced%22%7D
http://corpusoudnederlands.ivdnt.org/corpus-frontend/ONL/search/hits?first=0&number=20&patt=%5Bpos+%3D+%22PD%22+%5D%5B+pos+%3D+%22NOU-C%22+%26+lemma+%3D+%22huis%22+%5D&interface=%7B%22form%22%3A%22search%22%2C%22patternMode%22%3A%22expert%22%7D
http://corpusoudnederlands.ivdnt.org/corpus-frontend/ONL/search/hits?first=0&group=hit%3Aword%3Ai&number=20&patt=%5B+pos+%3D+%22aa%22+%5D+%5B+word+%3D+%22man%22+%5D&interface=%7B%22form%22%3A%22search%22%2C%22patternMode%22%3A%22advanced%22%7D
http://corpusoudnederlands.ivdnt.org/corpus-frontend/ONL/search/hits?first=0&group=context%3Aword%3Ai%3AL1-5&number=20&patt=%5B+lemma+%3D+%22god%22+%5D&interface=%7B%22form%22%3A%22search%22%2C%22patternMode%22%3A%22advanced%22%7D
http://corpusoudnederlands.ivdnt.org/corpus-frontend/ONL/search/docs?filter=subgenre%3A%28%22religious%22%29&first=0&group=field%3Asubgenre%3Ai&number=20&interface=%7B%22form%22%3A%22explore%22%2C%22exploreMode%22%3A%22corpora%22%7D&groupDisplayMode=table
http://corpusoudnederlands.ivdnt.org/corpus-frontend/ONL/search/docs?filter=region%3A%28%22Utrecht%22%29&first=0&group=field%3Adecade%3Ai&number=20&interface=%7B%22form%22%3A%22explore%22%2C%22exploreMode%22%3A%22corpora%22%7D&groupDisplayMode=table

Searching the corpus

Simple search

Search

The Simple Search allows you to quickly search for specific words (e.g. banuuerc) or lemmata (e.g.
banwerk). It is also possible to enter a phrase: ad banuuerc or ad banuuerc constituti sunt. To start the
search simply press enter or press the Search button.

The search field Word or lemma is provided with a list, which contains suggestions for possible search
terms in alphabetical order, based on the characters typed in.

Keep in mind that when a historical word form corresponds with a modern Dutch lemma, you will not
only find the desired historical word form, but also all word forms that can be traced back to that
homonymous lemma. For instance, the search term man does not only result in all occurrences of
man, but also in word forms e.g. manne, manno, mannon, men, min, which after all also belong to the
lemma man. In order to only find the word form man, use the attribute Word in Extended Search (see
over there).

Note that in Simple Search the patterns will be matched case-insensitively: banuuerc will deliver the
same results as BANUUERC or Banuuerc. See the paragraph Grouping results in Per Hit view to see
how it is nevertheless possible to distinguish between uppercase and lowercase letters.

Wildcards

In Simple Search, the use of wildcards can prove good service to search for specific word forms or
lemmata. A wildcard is a symbol used to replace or represent one or more characters. The following
two wildcards are supported:

* The asterisk matches any character zero or more times. Therefore, searching for a*n in Word
or lemma matches all word forms and lemmata that start with an a and end with an n, e.g.
amman, annen and Athalbern but also ana (lemma aan), antsceine (lemma antschijn) and

9

anther (lemma aan+die)
? The question mark matches a single character once. Therefore, b?n matches only

three-letter values starting with a b and ending with an n, e.g. bin, ban, ben but also bannum
(lemma ban), buna (lemma bun)

This wildcard can be used more than once. Thus b???n matches began, baden, bedon, bacon,
but also brun (lemma bruin), bethis (lemma beren) and geboren (lemma beren).

Note that searching with wildcards is limited to Simple Search and Extended Search. [In Advanced
Search and Expert Search you can use so-called regular expressions instead of wildcards.]

Reset

You can start a new search by pressing the Reset button. By doing so, both the search query and the
hits found will be cleared. Your search history, however, will remain unchanged.

Note that it is also possible to start a new search by entering a new word or phrase in the search field
Word or lemma.

History

The History button will display your query history. Per search query there are several possibilities (as
shown in the screenshot below): you can perform the search again (Search), you can copy the search
query as a link (Copy as link), you can download the search query as a file (Download as file), you
can delete a single search query (Delete) or delete all search queries (Delete all).

Every search query has its own url. If you copy this url via History (Copy as link) or directly from the
address bar of your browser, you can send it to someone else who can import this link via Import from
a link. It offers that person the possibility to run the search on his own computer.

Global settings

The Global settings dialogue, activated by pressing the wheel button, allows you to configure five
settings: Results per page, Sample size, Seed, Context size and Wide View.

● Results per page: you can choose whether you want 20, 50, 100 or 200 results to be shown;
● Sample size: selecting a value here will instruct the search engine to return a random sample

drawn from the complete result set. The sample size can be limited by
○ a percentage of the total number of search results (percentage)
○ the number of results displayed (count);

10

● Seed: a ‘random seed’ is a number used to initialize a so-called pseudo-random number
generator. Keeping the same seed will ensure that two samples drawn from the same result set
are identical. A new seed will most likely result in a different sample;

● Context size: by entering a number you can determine the number of words Before hit and
After hit;

● Wide View: the default setting is ‘small view’; you can change to Wide View by ticking the
checkbox.

Extended search
The Extended Search allows you to find all occurrences of a token with its specific attributes. A
token - usually just a single word - is the smallest unit within a corpus, whereas attributes are the
different values that together make up a token.

In this corpus the five attributes you can search for are Word (more precise: word form), Lemma, Part
of speech, Cliticity and Complete word or word part. All supported attributes are shown in the search
form:

11

In the search fields Word and Lemma enter the value of the attributes (or Upload a list of values; see
below) you are looking for. In the search fields Part of speech, Cliticity and Complete word or word
part select the desired values. Then press enter or click the Search button below to execute the search
and view the results. Note that the default setting for Word and Lemma in Extended search is case-
and diacritics-insensitive. For example, searching for the Word Maria will result in seven occurrences
of this name. By ticking the box Case-sensitive in - for instance - Group by Word in Results you will
not only find the Word Maria (5x), but also the variant maria (2x).

In order to directly find only occurrences of the Word (form) maria, tick the box Case- and diacritics-
sensitive under the search field Word (as shown below).

Please note that there is an important difference between the search fields Word and Lemma. As an
example: entering the value berg in Word will only provide you with occurrences of that exact string
of characters. When you enter berg in the search field Lemma you will - besides the lemma berg - also
find all word forms that are linked to that lemma, such as the spelling variant bergh and inflected
forms as bergon, bergo, berga, berge, bergan and bergas.

12

Wildcards

In Extended Search, the use of wildcards can prove good service to search for specific word forms or
lemmata. A wildcard is a symbol used to replace or represent one or more characters. The following
two wildcards are supported:

* The asterisk matches any character zero or more times. Therefore, searching for a*n in
Word matches all word forms that start with an a and end with an n, e.g. amman, Albin, annen
annen, anden and andren. Note that the same query in Lemma will give other results.

? The question mark matches a single character once. Therefore, searching for b?n in Lemma
matches only three-letter lemmata starting with a b and ending with an n, i.e. ban (with word
forms bannum, ban, *ban) and bun (word form buna).

This wildcard can be used more than once. Thus b???n (in Word) matches began, baden,
bedon, bacon and boben.

Note that searching with wildcards is limited to Simple Search and Extended Search. [In Advanced
Search and Expert Search you can use so-called regular expressions instead of wildcards.]

In the search fields Word and Lemma it is possible to search for different values simultaneously by
separating them without spaces by a vertical line, e.g. god|man|lief or - with the use of wildcards -
god|aan*|hond.

For the search field Word it is also possible to search for a series of tokens by entering multiple values
- including wildcards - separated by a space, e.g. then bergan, then * or * bergan. Note that searching
for then bergan, then * and * bergan in the search field Lemma will give no results!

Values at the same position in different fields are grouped together as a single token, meaning that all
values in the first position of each field are grouped to match a single token.

- A single-token example: searching for the Word(form) man together with Part of speech Noun
Common and Number Singular will result in a list of all occurences of the singular noun man.
The syntax of your query is shown in the results:
[word="man"&pos="nou\-c"&pos_number="sg"]

- A multi-token example: searching for kinde hiez in the Word(form) field and kind heten in the
Lemma field should find those occurrences of the bigram in which the first word is the
spelling variant of the noun kind and the second the declined form of the verb heten.

Upload a list of values

At the right side of the search fields Word and Lemma, there is an option to Upload a list of values;
those values must all be separated by a white space. Note that this function only works for *.txt-files.
(If you are using a text editor like Word, you have to save your file as a *.txt-file first.)

Every word in the uploaded file will be added to the list of values to search for. To remove the word
list simply delete all text in the search field or press the Reset button.

13

Part of speech dialog box

Clicking on the pencil next to the search field Part of speech provides you with the Part of speech
dialog box.

For most of the categories on the left you can tick certain features to further specify your search query.
By doing so you can for instance delimit your search, as shown in the above screenshot. The query
Verb - present - plural will result in hebban and [u]mbida[n] and numerous other hits.

Cliticity

This attribute enables you to distinguish between clitical and non-clitical forms in your search. For
instance if you are interested in all clitical wordforms containing the modern lemma ik (‘I’) you
should fill in ik at Lemma and choose clitic at Cliticity. Both search queries will be combined, as can
be seen in the search query:

This search results in hits such as námir [NA+IK] and woldik [WILLEN+IK].

Complete word or word part

This option makes it possible to search for words that are split into two or more parts. Think of
separable compound verbs as the infinitive afnemen (‘to take off’; conjugated form nam … áue, ‘took
off’) and pronominal adverbs as thar umbe (daarom). Keep in mind that you can only find both parts
at the same time using Lemma (afnemen) and the option part. If you are specifically looking for just

14

one of the composing parts (e.g. áue), you can enter that separate part in Word and click on the option
part. In order to find all occurrences with that word part, it is necessary to take into account the
different spelling variants of that word part (e.g. aua, abe).

Starting a new search

You can start a new search by pressing the Reset button. By doing so, both the search query and the
hits found will disappear. Your search history, however, will remain unchanged.

The search fields Word and Lemma are provided with a list, which contains suggestions for possible
search terms in alphabetical order, based on the characters typed in.

If you use the fields Word and Lemma, there are two possibilities to start a new search: fill in the
desired value and press enter, or click the Search button. The only way to start a new search after a
change in Part of speech, Cliticity or Complete word or word part is to click the Search button.

Filter search by

At the right side you will find the option to limit your query to a subset of documents with specific
metadata values. You can apply different filters for Date, Localization, Text type and Title and author.
(To view the results for all documents simply leave the attributes in the filtering form empty.)

By means of a number at the top of Filter search by, the number of values used to filter on, is
displayed:

There are two different ways to specify a filter, depending on the field type. You can either fill in a
value yourself - for instance Date Witness Year - or choose one or more values from a drop-down list -
for instance Area. You can pick one of these values by clicking on it; your choice will be marked with
a tick. It is possible to choose several values. If you want to delete a selection, you can click on the
corresponding line again. (To close the drop-down list, you can either press the upward pointing arrow
in the upper right corner or simply press escape.)

15

For a detailed description of the metadata, see the section Metadata categories at the beginning of this
manual.

Advanced search

The query builder

The basic building block in the query builder is the token box (see below). Each box represents a
token - usually just a single word - or a simple repetition of tokens; when multiple tokens are used,
they are matched in order from left to right.

You can use the query builder to create complex queries without writing CQL (here: Corpus Query
Language). Therefore, it is easy to use.

A token box in the querybuilder has two tabs: search and options.

The tab search

The tab search contains a set of attributes a token in the corpus must have to be matched by the query.
By clicking the +-button on the right hand side of this token, you can add new attributes (see below).

16

Then enter a value that the attribute must have for the token to be found. The search command
Lemma=lief and Part of Speech=Noun common for example excludes all forms of lief as an adjective.

The CQL query generated to match this token (the token query) in the corpus is displayed in the top
bar of the box, to help you understand what is happening internally. The following applies to our
example:

Token attributes

Specifying token attributes is similar to the Extended Search form. Select which attribute a token
should have, and enter the value that the attribute must have for the token to be matched. Attributes in
the query builder are interpreted as regular expressions. Note that this is different from the Extended
Search, where token patterns use wildcards.

Going beyond single-attribute token queries, a token box also allows you to combine several attributes
and to specify repetition options.

Adding attributes to a token box

Using the +-button, new attributes can be added. Two options exist: AND and OR.

The AND option creates a new attribute
restriction that a token must match in addition to
the ones which were already there. As an
example: suppose we want to match the verb zijn
(‘to be’). First, fill in the attribute Lemma with
value zijn, then click +, choose AND, and choose
the value Verb for Part of speech.

17

Similarly, creating a new attribute using OR will
create a token query matching tokens that have
the original attribute or the new attribute. For
instance, enter Word=er first, add a new attribute
with the OR option and enter Adverb as Part of
Speech to match tokens with part of speech tag
Adverb or with word form equal to er.

Function of the two +-buttons in a token box

The difference between the +-sign on the right of an attribute and the one below it, is that the +-sign
on the right keeps the newly added attribute “within a subclause”. This is most easily explained by
means of an example.

Suppose we want to search for either goed or lief, used as a noun. If we add the attributes in the order
Part of speech=Common noun AND Lemma=goed, OR Lemma=lief using the +-signs below the
attributes, as in the left screenshot below, we get the token query [(pos = "nou\-c" & lemma = "goed")
| lemma = "lief"]. This will also match adjective forms of lief, as in “Thes scalt thu nu liebe uater
ezzen turch thinen willen haben ich iz gewunnen”, where liebe is an adjective, so this is not what we
were after.

If, on the other hand, we add OR lemma=lief with the +-sign to the right of the attribute
Lemma=goed, it will be inserted in a subclause (Lemma=lief OR Lemma=goed), thus resulting in the
correct query pos = "nou\-c" & (lemma = "goed" | lemma = "goed", as shown in the right screenshot
below.

18

The tab options

The tab options specifies the contextual properties, such as whether the token occurs at the end of a
sentence, and the repetition pattern. However, since most Old Dutch texts lack punctuation, it is not
always meaningful to use this function.

Managing sequences of token boxes

There are three ways to manage the sequence and the number of token boxes:
● Rearrange a token by clicking and dragging the little arrow handle in the top-left corner

simultaneously (1).
● Delete a token by clicking the x in the top-right corner (2).
● Create a new token box by clicking the +-button next to the upper right corner of the utmost

right token box (3).

↓ (1) ↓ (2) ↓ (3)

19

Uploading value lists in the query builder
It's also possible to upload a list of values, separated by a white space. To do so, click the upload
button (with the arrow pointing upwards) and select a text file. Tokens will then be matched for any of
the values from the file.

Note that this function only works for *.txt-files. (If you are using a text editor like Word, you have to
save your file as a *.txt file or you can copy and paste the values into a *.txt-file first.)

After uploading a file, the text can be edited by clicking the yellow marked text field. Editing the text
is temporary and will not modify your original file.

To remove an uploaded file and go back to typing a value, click on the cross (x) next to the yellow
text box. Another possibility to clear the uploaded values is by clicking the yellow marked text field
and then press the Clear button on the bottom left corner of the Edit box. Using the Reset button will
start a complete new search.

Copy to CQL editor

It is possible to copy a query - like [pos="aa"][lemma="goed"] - to the CQL editor using the Copy to
query builder button. This will take you automatically to the Expert Search screen, after which you
can start the search or adjust the query if desired.

Expert search

The Corpus Query Language (CQL) editor allows you to type your own CQL query, to copy your
query into the query builder (in Advanced Search), to import a previously downloaded query and to
upload a tab separated list of values to substitute for gap values (see below for further explanation).

CQL queries are expressions built up with the help of a few sequence operators and brackets from
basic blocks enclosed by square brackets, in each of which one or more token attributes are specified
(these correspond to the token boxes in the query builder).

In CQL, spaces only affect a search if they are included in quotes. Whether the search command is
[word="man"] or [word = "man"] (or just “man”) does not make any difference to the result.
However, there is a difference between the queries [word="man"] and [word=" man"]. The first search
results in 35 hits, but the second one in zero!

Some examples:

● Simple: [word="man"], e.g. the attribute word matches the regular expression man;
[word!="man"], e.g. the attribute word does not match the regular expression man;
[lemma=".*man"] matches all lemmata ending with man, including man itself.

● Simple sequence: [pos="PD"][lemma="willen"] matches all occurrences of the lemma
willen preceded by a pronoun.

● Combination of attributes (combining operators are &, |, !), e.g. [word_or_lemma="goed" &

pos!="AA"] or - equivalently - [word_or_lemma="goed" & !pos="AA"] matches all
occurrences of goed, not being an adjective.

20

http://corpusoudnederlands.ivdnt.org/corpus-frontend/ONL/search/hits?first=0&number=20&patt=%5B+pos+%3D+%22aa%22+%26+lemma+%3D+%22goed%22+%5D&interface=%7B%22form%22%3A%22search%22%2C%22patternMode%22%3A%22advanced%22%7D
http://corpusoudnederlands.ivdnt.org/corpus-frontend/ONL/search/hits?first=0&number=20&patt=%5B+pos+%3D+%22pd%22+%5D+%5B+lemma+%3D+%22willen%22+%5D&interface=%7B%22form%22%3A%22search%22%2C%22patternMode%22%3A%22expert%22%7D
http://corpusoudnederlands.ivdnt.org/corpus-frontend/ONL/search/hits?first=0&number=20&patt=%5Bword_or_lemma%3D%22goed%22+%26+pos%21%3D%22AA%22%5D&interface=%7B%22form%22%3A%22search%22%2C%22patternMode%22%3A%22expert%22%7D
http://corpusoudnederlands.ivdnt.org/corpus-frontend/ONL/search/hits?first=0&number=20&patt=%5Bword_or_lemma%3D%22goed%22+%26+pos%21%3D%22AA%22%5D&interface=%7B%22form%22%3A%22search%22%2C%22patternMode%22%3A%22expert%22%7D
http://corpusoudnederlands.ivdnt.org/corpus-frontend/ONL/search/hits?first=0&number=20&patt=%5Bword_or_lemma%3D%22goed%22+%26+%21pos%3D%22AA%22%5D&interface=%7B%22form%22%3A%22search%22%2C%22patternMode%22%3A%22expert%22%7D

● Repetition operators: [pos="NOU-C"]{3} matches a sequence of 3 common nouns,
[pos="NOU-C"]{2,4} matches a sequence of 2 to 4 common nouns, [pos="NOU-C"]{3,}
matches a sequence of 3 or more common nouns.

● The empty [] matches any token, e.g. [pos="AA"] []{2} [pos="AA"] matches two
adjectives with 2 arbitrary tokens in between.

● Operators |, & and parentheses () and the repetition operators (+, *, ? and {}) can be used to
build complex sequence queries. Example: "dijn" "heer" | "zijn" "zoon", or even
("dijn" "heer" | "zijn" "zoon")+, matching any sequence of dijn heer or zijn zoon.
Note that, while most queries up to this point could also have been constructed with the query
builder (in fact, some of the links on the examples will direct you to there), we really need the
power of CQL from here on.

This short list does not cover all CQL features. For more detailed information on how to
write CQL, please consult the short CQL manual in the appendix, which contains further pointers.

Copy to query builder

When the query is relatively simple - like [lemma=".*man"][pos="nou-c"] - it can also be imported
into the querybuilder using the Copy to query builder button. This will take you automatically to the
Advanced Search screen, after which you can start the search or adjust the query if desired.

A message will be displayed next to the button if the query couldn't be parsed.

Import query

If you have entered a search query, you can find it back by clicking the History button. On the right
hand side you can select Download as file in the drop-down menu (default value is Search) and save
the file. (For a more elaborate description of the History button see Simple Search.)

Previously saved queries can be used again by uploading them through the Import query button.

Gap filling

Use this button to upload a Tab Separated Values (TSV) file, which is a simple text format for storing
data in a tabular structure. Each record in the table is one line of the text file. Each field value of a
record is separated from the next by a tab character. It is also possible to upload a plain text file (.txt)
that has the same properties, as is shown in the following screenshot:

21

http://corpusoudnederlands.ivdnt.org/corpus-frontend/ONL/search/hits?first=0&number=20&patt=%5Bpos%3D%22NOU-C%22%5D%7B3%7D&interface=%7B%22form%22%3A%22search%22%2C%22patternMode%22%3A%22expert%22%7D
http://corpusoudnederlands.ivdnt.org/corpus-frontend/ONL/search/hits?first=0&number=20&patt=%5Bpos%3D%22NOU-C%22%5D%7B2%2C4%7D&interface=%7B%22form%22%3A%22search%22%2C%22patternMode%22%3A%22expert%22%7D
http://corpusoudnederlands.ivdnt.org/corpus-frontend/ONL/search/hits?first=0&number=20&patt=%5Bpos%3D%22NOU-C%22%5D%7B3%2C%7D&interface=%7B%22form%22%3A%22search%22%2C%22patternMode%22%3A%22expert%22%7D
http://corpusoudnederlands.ivdnt.org/corpus-frontend/ONL/search/hits?first=0&number=20&patt=%5Bpos%3D%22AA%22%5D+%5B%5D%7B2%7D+%5Bpos%3D%22AA%22%5D&interface=%7B%22form%22%3A%22search%22%2C%22patternMode%22%3A%22expert%22%7D
http://corpusoudnederlands.ivdnt.org/corpus-frontend/ONL/search/hits?first=0&number=20&patt=%22dijn%22+%22heer%22+%7C+%22zijn%22+%22zoon%22&interface=%7B%22form%22%3A%22search%22%2C%22patternMode%22%3A%22expert%22%7D
http://corpusoudnederlands.ivdnt.org/corpus-frontend/ONL/search/hits?first=0&number=20&patt=%28%22dijn%22+%22heer%22+%7C+%22zijn%22+%22zoon%22%29%2B&interface=%7B%22form%22%3A%22search%22%2C%22patternMode%22%3A%22expert%22%7D
http://corpusoudnederlands.ivdnt.org/corpus-frontend/ONL/search/hits?first=0&number=20&patt=%5Blemma%3D%22.%2Aman%22%5D%5Bpos%3D%22nou-c%22%5D&interface=%7B%22form%22%3A%22search%22%2C%22patternMode%22%3A%22expert%22%7D
https://en.wikipedia.org/wiki/Row_(database)

A *.tsv file or a comparable *.txt file enables you to complete a query with marked gaps.

If, for instance, you are interested in the distribution of adjectives you can create this query in the
Corpus Query Language field:

[lemma="@@"][pos="AA"][lemma="@@"]

By clicking Gap-filling you can upload a file with a tab-separated list of values from your computer to
substitute them for the gap values, i.e. the at signs (@@) in your query. After the upload your values
will appear in a separate box:

22

The values in the first column - die, dat, een - will be entered at the position of the first gap (@@) and
the values in the second column - volk, kruis, koning - at the position of the second gap (@@). With
these values, gap-filling yields the following results:

This mimics the functionality to upload a list of values in the Extended Search and Advanced Search
interfaces.

Please note that for this to work, you do need to enter @@ in the field where you want the
substitution to take place. An empty field ([]) will match any term.

Viewing results
Results can be viewed in two ways: Per hit (hit is defined as one token or a group of tokens that
matched the query), or Per document (each document listed contains at least one hit).

Per Hit view

Click a hit - the bold word in the column Hit - to display the properties and values of the hit. Click the
hit again to close.

Hit rows are always preceded by a row containing the document title in which those hits occurred, in
this case “Mittelfränkische Reimbibel A”. Document titles can be toggled on or off by using the Hide
Titles (or Show Titles when titles are hidden) button at the bottom of the page.

Sorting results

Click on any of the column headings to sort the hits on values within the column, clicking again
inverts the sorting. Extra sorting options are given when clicking on Before hit, Hit and After hit: you
can sort by various attributes, as shown below.

23

You can also sort the results by means of the drop-down menu at the bottom of the page (Sort by…),
which offers you the possibility to sort by various attributes (Hit, Before hit, After hit, Date,
Localization, Text type and Title and author).

Grouping results

Results Per Hit can be grouped by properties of Hit, Before hit, After hit and of the metadata of the
documents in which those hits occur (Date, Localization, Text type, Title and author). Grouping is
facilitated by the drop-down menu Group hits by... By selecting one of the properties a tick box
appears that makes it possible to distinguish between case-sensitive and case-insensitive. (In the
example below we searched for the lemma god and grouped the hits on word form.)

24

In the Per hit view, advanced grouping options are available by selecting the option Context
(advanced). This option allows you to group the results by up to 5 tokens before or after the hit. It also
allows you to group the results based on (parts of) the hits. By pressing New context group you can
group the results by another property or another range.

We will work that out using an example. A search for groups of verbs - in Expert Search:
[pos="VRB"]{3} - produces hits like the following (Titles are hidden):

It is now possible to group the hits by the first and second tokens of those hits. See below.

25

Click a group to show or hide hits within that group, as shown below. Click once more on the group to
close it again. If more than twenty hits are found in a document, you can make them appear by
clicking on Load more concordances (not visible in the example below).

Click on View detailed concordances to go back to the normal hits view to see more detailed
information for the hits in this group. The button Go back to grouped view brings you back to the list
of groups.

Per Document view

Sorting results

Results can be sorted by means of the drop-down menu at the bottom of the page, which enables you
to sort on Documents and on Date, Localization, Text type, and Title and author.

26

Grouping results

Results Per Document can be grouped by the metadata of the documents in which those hits occur
(Date, Localization, Text type, and Title and author). Here, grouping is facilitated by the drop-down
menu Group docs by...

Exporting results

The search results - both Per hit as Per Document - can be exported by using buttons Export (= Export
results as a CSV-file) or Export for Excel (= Export results as a CSV file for use with Excel) at the
bottom right of the page. These Comma-Separated Values-files consist only of text data, which makes
it easy to implement (read and/or write) them into a spreadsheet or database program.

Information about a document
Click on a document title to open the document in a new window - for instance Fontes Egumndensis
in the screenshot below

Content

Hits from the current query will be highlighted in bold in the opened document. In the case of several
hits only the current hit will also appear in shadow. You can navigate from one hit to another by using
the arrows at the Pages and the Hits button:

When you hover with your mouse over a specific word in the document a pop-up will appear with the
modern lemma in capitals and the option “Show details”. By clicking this link you will see extra
information on word level:

27

Metadata of a document

In the Metadata tab all metadata properties of the document are displayed.

Statistics

The Statistics tab shows several document statistics: the number of Tokens, the number of Types
(unique word forms), the number of Lemmas and the Type/token ratio. It is possible to print or to
download these statistics via the menu symbol right of the title Token/Part of Speech Distribution or
via the menu symbol right of the title Vocabulary Growth.

Exploring the corpus
The Explore tab has three subdivisions: Documents, N-grams and Statistics.

Documents
This subtab allows you to investigate the corpus. It consists of two drop-down menus to specify the
grouping of the metadata and to specify the way the groups are to be shown.

A simple example: suppose we want to obtain information about the Localization of Old Dutch
documents dating from 700 to 800 within the Corpus Oudnederlands.

- In the Group documents by metadata drop-down menu, choose Group by Area
- In Show groups as, select docs
- In the metadata search form (Filter search by), fill in at Witness Year 700 and 800
- Press ‘Search’

28

After pressing the bar with the number of docs in group, you will get this result:

N-grams
An N-gram is a sequence of N items: Word, Lemma and Part of speech (+ features). This option will
list the frequency of different N-grams in a (sub-)corpus.

Options

- N-gram size: the length of the sequence (a number from 1 to 5; default setting is 5)
- N-gram-type: choose for sequences of Word (i.e. word form), Lemma, Part of speech or Part

of speech + features. If you do not specify the search term further, a series of five consecutive
Words, Lemmas, Parts of speech or Part of speech + features will be searched for.

- It is also possible to restrict to, for instance, 5-grams with some slots already specified, as is
shown in the following example.

- By using the Filter search by... you can create a subcorpus within the Corpus Oudnederlands
for specific metadata.

Example

Within all the documents of the Corpus Oudnederlands, you will find two occurrences of this
so-called 5-gram:

29

Statistics (frequency lists)

Here, you can produce frequency lists for a subcorpus. It is rather similar to the previous option, but
restricted to 1-grams.

Options

- Frequency list type: choose for lists of Word (i.e. Word form), Lemma, Part of speech or Part
of speech + features

- By using the Filter search by... you can create a subcorpus within the Corpus Oudnederlands
for specific metadata

Example

It is possible to determine the use of the most frequently used Old Dutch words in Utrecht in the
Corpus Oudnederlands by searching for Frequency list type Word and by filtering search by Area
(localization):

30

This results in:

31

Appendix: Corpus Query Language
BlackLab supports Corpus Query Language, a full-featured query language introduced by the IMS
Corpus WorkBench (CWB) and also supported by the Lexicom Sketch Engine. It is a standard and
powerful way of searching corpus.
The basics of Corpus Query Language is the same in all three projects, but there are a few minor
differences in some of the more advanced features, as well as some features that are exclusive to some
projects. For most queries however, this will not be an issue.
This page will introduce the query language and show all features that BlackLab supports. If you want
to learn even more about CQL, see CWB CQP Query Language Tutorial and Sketch Engine Corpus
Query Language.

CQL support
For those who already know CQL, here's a quick overview of the extent of BlackLab's support for this
query language. If there is a feature we don't support, yet is important to you, please let us know. If it's
quick to add, we may be able to help you out.

Supported features
BlackLab currently supports (arguably) most of the important features of Corpus Query Language:
● Matching on token annotations (also called properties or attributes), using regular expressions

and =, !=, !. Example: [word="bank"] (or just "bank")
● Case/accent-sensitive matching. Note that, unlike in CWB, case-INsensitive matching is

currently the default. To explicitly match case/accent-insensitivity, use "(?i)...". Example:
"(?-i)Mr\." "(?-i)Banks"

● Combining criteria using &, | and !. Parentheses can also be used for grouping. Example:
[lemma="bank" & pos="V"]

● Match-all pattern [] matches any token. Example: "a" [] "day"
● Regular expression operators +, *, ?, {n}, {n,m} at the token level. Example: [pos="AA"]+
● Sequences of token constraints. Example: [pos="AA"] "cow"
● Operators |, & and parentheses can be used to build complex sequence queries. Example:

"happy" "dog" | "sad" cat"
● Querying with tag positions using e.g. <s> (start of sentence), </s> (end of sentence), <s/>

(whole sentence) or <s> ... </s> (equivalent to <s/> containing ...). Example: <s> "The" . XML
attribute values may be used as well, e.g. <ne type="PERS"/> ("named entities that are
persons").

● Using within and containing operators to find hits inside another set of hits. Example: "you"
"are" within <s/>

● Using an anchor to capture a token position. Example: "big" A:[]. Captured matches can be
used in global constraints (see next item) or processed separately later (using the Java interface;
capture information is not yet returned by BlackLab Server). Note that BlackLab can actually
capture entire groups of tokens as well, similarly to regular expression engines.

32

http://cwb.sourceforge.net/files/CQP_Tutorial/
https://www.sketchengine.co.uk/documentation/corpus-querying/
https://www.sketchengine.co.uk/documentation/corpus-querying/

● Global constraints on captured tokens, such as requiring them to contain the same word.
Example: "big" A:[] "or" "small" B:[] :: A.word = B.word

See below for features not in this list that may be added soon, and let us know if you want a particular
feature to be added.

Differences from CWB
BlackLab's CQL syntax and behaviour differs in a few small ways from CWBs. In future, we'll aim
towards greater compliance with CWB's de-facto standard (with some extra features and
conveniences).
For now, here's what you should know:
● Case-insensitive search is currently the default in BlackLab, although you can change this if

you wish. CWB and Sketch Engine use case-sensitive search as the default. We may change
our default in a future major version.
If you want to switch case-/diacritics-sensitivity, use "(?-i).." (case-sensitive) or "(?i).."
(case-insensitive, usually the default). CWBs %cd flags for setting case/diacritics-sensitivity
are not (yet) supported, but will be added.

● If you want to match a string literally, not as a regular expression, use backslash escaping:
"e\.g\.". %l for literal matching is not yet supported, but will be added.

● BlackLab supports result set manipulation such as: sorting (including on specific context
words), grouping/frequency distribution, subsets, sampling, setting context size, etc. However,
these are supported through the REST and Java APIs, not through a command interface like in
CWB. See BlackLab Server overview).

● Querying XML elements and attributes looks natural in BlackLab: <s/> means "sentences",
<s> means "starts of sentences", <s type='A'> means "sentence tags with a type attribute with
value A". This natural syntax differs from CWBs in some places, however, particularly when
matching XML attributes. While we believe our syntax is the superior one, we may add support
for the CWB syntax as an alternative.
We only support literal matching of XML attributes at the moment, but this will be expanded to
full regex matching.

● In global constraints (expressions occurring after ::), only literal matching (no regex matching)
is currently supported. Regex matching will be added soon. For now, instead of A:[] "dog" ::
A.word = "happy|sad", use "happy|sad" "dog".

● To expand your query to return whole sentences, use <s/> containing (...). We don't yet support
CWBs expand to, expand left to, etc., but may add this in the future.

● The implication operator -> is currently only supported in global constraints (expressions after
the :: operator), not in regular token constraints. We may add this if there's demand for it.

● We don't support the @ anchor and corresponding target label; use a named anchor instead. If
someone makes a good case for it, we will consider adding this feature.

● backreferences to anchors only work in global constraints, so this doesn't work: A:[] [] [word =
A.word]. Instead, use something like: A:[] [] B:[] :: A.word = B.word. We hope to add support
for these in the near future, but our matching approach may not allow full support for this in all
cases.

33

http://inl.github.io/BlackLab/blacklab-server-overview.html

(Currently) unsupported features
The following features are not (yet) supported:
● intersection, union and difference operators. These three operators will be added in the future.

For now, the first two can be achieved using & and | at the sequence level, e.g. "double" [] & []
"trouble" to match the intersection of these queries, i.e. "double trouble" and "happy" "dog" |
"sad "cat" to match the union of "happy dog" and "sad cat".

● _ meaning "the current token" in token constraints. We will add this soon.
● lbound, rbound functions to get the edge of a region. We will probably add these.
● distance, distabs functions and match, matchend anchor points (sometimes used in global

constraints). We will see about adding these.
● using an XML element name to mean 'token is contained within', like [(pos = "N") & !np]

meaning "noun NOT inside in an tag". We will see about adding these.
● a number of less well-known features. If people ask, we will consider adding them.

Using Corpus Query Language

Matching tokens
Corpus Query Language is a way to specify a "pattern" of tokens (i.e. words) you're looking for. A
simple pattern is this one:
[word="man"]

This simply searches for all occurrences of the word "man". If your corpus includes the per-word
properties lemma (i.e. headword) and pos (part-of-speech, i.e. noun, verb, etc.), you can query those
as well. For example, to find a form of word "search" used as a noun, use this query:
[lemma="search" & pos="NOU-C"]

This query would match "search" and "searches" where used as a noun. (Of course, your data may
contain slightly different part-of-speech tags.)
The first query could be written even simpler without brackets, because "word" is the default
property:
"man"

You can use the "does not equal" operator (!=) to search for all words except nouns:
[pos != "NOU-C"]

The strings between quotes can also contain wildcards, of sorts. To be precise, they are regular
expressions, which provide a flexible way of matching strings of text. For example, to find "man" or
"woman", use:
"(wo)?man"

And to find lemmata starting with "under", use:
[lemma="under.*"]

34

http://en.wikipedia.org/wiki/Regular_expression
http://en.wikipedia.org/wiki/Regular_expression

Explaining regular expression syntax is beyond the scope of this document, but for a complete
overview, see here.

Sequences
Corpus Query Language allows you to search for sequences of words as well (i.e. phrase searches, but
with many more possibilities). To search for the phrase "the tall man", use this query:
"the" "tall" "man"

It might seem a bit clunky to separately quote each word, but this allow us the flexibility to specify
exactly what kinds of words we're looking for. For example, if you want to know all single adjectives
used with man (not just "tall"), use this:
"an?|the" [pos="AA"] "man"
This would also match "a wise man", "an important man", "the foolish man", etc.

Regular expression operators on tokens
Corpus Query Language really starts to shine when you use the regular expression operators on whole
tokens as well. If we want to see not just single adjectives applied to "man", but multiple as well:
"an?|the" [pos="AA"]+ "man"

This query matches "a little green man", for example. The plus sign after [pos="AA"] says that the
preceding part should occur one or more times (similarly, * means "zero or more times", and ? means
"zero or one time").
If you only want matches with two or three adjectives, you can specify that too:
"an?|the" [pos="AA"]{2,3} "man"

Or, for two or more adjectives:
"an?|the" [pos="AA"]{2,} "man"

You can group sequences of tokens with parentheses and apply operators to the whole group as well.
To search for a sequence of nouns, each optionally preceded by an article:
("an?|the"? [pos="NOU-C"])+

This would, for example, match the well-known palindrome "a man, a plan, a canal: Panama!" (A
note about punctuation: in BlackLab, punctuation tends to not be indexed as a separate token, but as a
property of a word token - CWB and Sketch Engine on the other hand tend to index punctuation as a
separate token instead. You certainly could choose to index punctuation as a separate token in
BlackLab, by the way -- it's just not commonly done. Both approaches have their advantages and
disadvantages, and of course the choice affects how you write your queries.)

35

http://www.regular-expressions.info/

Case- and diacritics-sensitivity
CWB and Sketch Engine both default to (case- and diacritics-)sensitive search. That is, they exactly
match upper- and lowercase letters in your query, plus any accented letters in the query as well.
BlackLab, on the contrary, defaults to *IN*sensitive search (although this default can be changed if
you like). To match a pattern sensitively, prefix it with "(?-i)":
"(?-i)Panama"

If you've changed the default search to sensitive, but you wish to match a pattern in your query
insensitively, prefix it with "(?i)":
[pos="(?i)NOU-C"]

Although BlackLab is capable of setting case- and diacritics-sensitivity separately, it is not yet
possible from Corpus Query Language. We may add this capability if requested.

Matching XML elements
Corpus Query Language allows you to find text in relation to XML elements that occur in it. For

example, if your data contains sentence tags, you could look for sentences starting with "the":
<s>"the"

Similarly, to find sentences ending in "that", you would use:
"that"</s>

You can also search for words occurring inside a specific element. Say you've run named entity
recognition on your data and all person names are surrounded with <person>...</person> tags. To find
the word "baker" as part of a person's name, use:
"baker" within <person/>

Note the forward slash at the end of the tag. This way of referring to the element means "the whole
element". Compare this to <person>, which means "the element's open tag", and </person>, which
means "the element's close tag".
The above query will just match the word "baker" as part of a person's name. But you're likely more
interested in the entire name that contains the word "baker". So, to find those full names, use:
<person/> containing "baker"

Or, if you simply want to find all persons, use:
<person/>

As you can see, the XML element reference is just another query that yields a number of matches. So
as you might have guessed, you can use "within" and "containing" with any other query as well. For
example:
([pos="AA"]+ containing "tall") "man"
will find adjectives applied to man, where one of those adjectives is "tall".

36

Labeling tokens, capturing groups
Just like in regular expressions, it is possible to "capture" part of the match for your query in a
"group".
CWB and Sketch Engine offer similar functionality, but instead of capturing part of the query, they
label a single token. BlackLab's functionality is very similar but can capture a number of tokens as
well. For example:
"an?|the" Adjectives:[pos="AA"]+ "man"
This will capture the adjectives found for each match in a captured group named "Adjectives".
BlackLab also supports numbered groups:
"an?|the" 1:[pos="AA"]+ "man"

Global constraints
If you tag certain tokens with labels, you can also apply "global constraints" on these tokens. This is a
way of relating different tokens to one another, for example requiring that they correspond to the same
word:
A:[] "by" B:[] :: A.word = B.word
This would match "day by day", "step by step", etc.

37

